Aquesta web utilitza cookies per a obtenir dades estadístiques de la navegació dels seus usuaris. Si continues navegant considerem que acceptes el seu ús. | Més informació

Inici

Fundació per a la Investigació i la Docència Maria Angustias Giménez

A comparison of various MRI feature types for characterizing whole brain anatomical differences using linear pattern recognition methods.


Monté-Rubio GC, Falcón C, Pomarol-Clotet E, Ashburner J


Neuroimage        Impact Factor: 5.840


PubMed Id: 29864520  Link a PubMed


Abstract (eng):

There is a widespread interest in applying pattern recognition methods to anatomical neuroimaging data, but so far, there has been relatively little investigation into how best to derive image features in order to make the most accurate predictions. In this work, a Gaussian Process machine learning approach was used for predicting age, gender and body mass index (BMI) of subjects in the IXI dataset, as well as age, gender and diagnostic status using the ABIDE and COBRE datasets. MRI data were segmented and aligned using SPM12, and a variety of feature representations were derived from this preprocessing. We compared classification and regression accuracy using the different sorts of features, and with various degrees of spatial smoothing. Results suggested that feature sets that did not ignore the implicit background tissue class, tended to result in better overall performance, whereas some of the most commonly used feature sets performed relatively poorly.




Demanar article complet en format .pdf, el rebràs per email

* Limitat a col·laboradors Germanes Hospitalàries


(*)
(*)
(*)