Aquesta web utilitza cookies per a obtenir dades estadístiques de la navegació dels seus usuaris. Si continues navegant considerem que acceptes el seu ús. | Més informació


Fundació per a la Investigació i la Docència Maria Angustias Giménez

Patterns of activation and de-activation associated with cue-guided spatial navigation: a whole brain, voxel-based study.

Salgado-Pineda P, Landin-Romero R, Pomes A, Spanlang B, Sarró S, Salvador R, Slater M, McKenna PJ, Pomarol-Clotet E

Neuroscience        Impact Factor: 3.357

PubMed Id: 28663090  Link a PubMed

Abstract (eng):

Functional imaging studies have implicated the hippocampus and parahippocampal gyrus in cue-guided spatial navigation, but also many other regions. Furthermore, little is known about de-activations that take place during performance of navigation tasks, something that is of interest given that the hippocampus is a component of the default mode network, which de-activates during attention-demanding tasks. In this study 22 healthy subjects underwent whole-brain functional Magnetic Resonance Imaging (fMRI) while they navigated towards a previously learnt goal in a virtual reality environment. At a threshold of p<0.05 corrected, the subjects showed a pattern of widespread cortical activations, including the parahippocampal and retrosplenial cortex and also parts of the frontal, temporal and occipital cortex. Hippocampal activation, however, was restricted to the posterior portion of the structure bilaterally. De-activations were seen in the medial frontal cortex and other regions of the default mode network, but not in the posterior cingulate cortex/precuneus. The findings support the involvement of the hippocampus in cue-guided navigation, but suggest that its posterior regions are particularly important. Cue-guided spatial navigation is associated with de-activation in some but not all parts of the default mode network.

Demanar article complet en format .pdf, el rebràs per email

* Limitat a col·laboradors Germanes Hospitalàries